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Abstract

This paper addresses the challenge of adjusting energy consumption data for weather
variations by introducing a novel General Weather Indicator (GWI). The GWI combines
multiple weather variables, including temperature, wind, sunlight, rain, and cloudiness,
using a novel econometric approach that applies K-means for threshold identification
and LASSO for variable selection. Through an empirical analysis of sectoral, electricity
and natural gas consumption in France, we demonstrate that the GWI outperforms
the standard HDD approach by addressing three main concerns: the lack of statistical
criteria for defining the base temperature, the reliance solely on temperature as the
weather variable, and the assumption of a constant base temperature over time and
space. Based on these results, we propose an analysis of the sectoral functional form
and an estimation of weather elasticities for energy demand in France at both monthly
and daily levels.
JEL classification: C32, E61, P28, Q47

Keywords: sectoral energy consumption, seasonal adjustment, weather,heating degree days,
k-means clustering, penalization

∗We warmly thank Virginie Andrieux, Marie Bessec, Anna Creti, Tomás Del Barrio Castro and Daniel
Herrera Araujuo for their insightful suggestions and detailed comments. We would also like to thank the
participants of the seminars and conferences of the International Association for Applied Econometrics (IAAE
2024), the 2024 RCEA International Conference in Economics, Econometrics, and Finance (ICEEF 2024)
and the 44th International Symposium on Forecasting (ISF) and of the workshop organised by the French
section of the Association of Energy Economists (FAEE) for their valuable comments. The views expressed
in this paper are solely those of the authors and do not necessarily reflect those of the institutions with which
they are affiliated.

†email: marie.bruguet@dauphine.eu
‡email: arthur.thomas@dauphine.psl.eu
§email: ronan.le-saout@ensai.fr

1



1 Introduction

In the context of climate change, the Paris Agreement calls for a reduction in global emissions
to mitigate its effects. In 2021, energy use accounted for 76.7% of total emissions on aver-
age for Europe, highlighting the significant potential for European countries to meet their
emissions targets by significantly reducing energy consumption.1 In this context, the French
government has decided reduce energy consumption by 20% in 2030 compared to 2012 (see
MTE, 2020). This initiative aims to reduce both greenhouse gas emissions and dependence
on fossil fuels. In order to assess the effectiveness of such strategies, government agencies
need relevant indicators to control for weather variations in the energy demand. Otherwise,
a change in temperature or an increase in wind episodes could be misinterpreted as a change
in energy demand in response to a policy of demand reduction.

This paper focuses on identifying and analysing meteorological factors that influence
energy consumption. It is evident that there is a significant correlation between monthly
energy consumption and temperature. This is largely due to the high energy demand for
heating buildings during the winter months and cooling buildings in hot climates during the
summer. To ensure reliable comparisons over time and to assess the impact of socio-economic
factors alone, it is essential to correct observed consumption for seasonality and weather
variations (see e.g. Pang et al., 2022). It is therefore important for public policy makers
to have access to robust seasonal adjustments. For example, in France, this weather- and
seasonally-adjusted energy consumption serves as a benchmark for assessing progress toward
the net-zero goal of the national strategy ("Stratégie Nationale Bas-Carbone"). Futhermore,
all indicators used to monitor and inform future energy capacity investment decisions are
expressed in weather- and seasonally-adjusted values, in line with the government’s ten-
year plan.2 It is also crucial to assess the impact of a sufficiency policy such as the "Plan
de sobriété énergétique" on energy consumption, taking into account weather and seasonal
variations.3 This is particularly relevant in the context of a change in consumer behavior due
to environmental awareness and/or price increases, such as the inflationary spike triggered
by the sharp fall in Russian supplies.4

The concept of Heating Degree Days (HDD) and Cooling Degree Days (CDD) has tra-
ditionally been used to explain seasonal patterns in energy consumption due to weather
variations. The calculation of HDD (CDD) is based on the concept of base temperature.
This indicator is only calculated if the temperature at time t is below (or above) the base
temperature. The base temperature is the outdoor temperature at which agents begin to heat

1National emissions reported to the United Nations Framework Convention on Climate Change and the
EU Greenhouse Gas Monitoring Mechanism.

2The "Programmation Pluriannuel de l’Energie" Multi-Annual Energy Plan (MAEP) establishes the pri-
orities for government action on energy policy for metropolitan France over the next decade, divided into
two 5-year periods. The current plan covers the period from 2024 to 2033.

3"Plan de sobriété énergétique" promotes the concept of energy sufficiency, which is the voluntary and
organized reduction of energy consumption. It includes various measures aimed at changing certain habits
and reducing unnecessary energy consumption.

4Environmental awareness has been growing in France over the years, and an annual survey by the Agence
de l’Environnement et de la Maîtrise de l’Energie (ADEME) assesses a 36% awareness of climate change as
the main environmental concern ADEME (2022)
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(cool) buildings to achieve an indoor comfort temperature. The concept of HDD (CDD) is
based on the understanding that there is a non-linear relationship between temperature and
energy consumption, as outlined by Henley and Peirson (1997). This methodology dates
back to the 1870s when it was first used in agricultural yield studies. It is now widely used
to measure adjusted energy use. While there has been extensive research on the estimation
of temperature response functions for energy demand (see Fazeli et al., 2016, for a compre-
hensive review), a broader view of the literature (De Azevedo et al., 2015) underlines the
need for a statistically validated approach, as most papers using HDD indicators still define
a base temperature of 18°C, mostly based on Thom (1954).5

Beyond the choice of base temperature, this definition of HDD (CDD) can be challenged
in three ways: first, there is no reason for the base temperature to be constant over time.
Studies such as Sailor and Pavlova (2003) and Kennard et al. (2022) emphasize the rise in the
level of CDD links to climate change, however, it is also important to account for dynamic
base temperatures when predicting future energy demand. These changes in base tempera-
ture may arise from factors such as increased awareness of energy efficiency, advancements in
building insulation technologies, and shifts in comfort preferences, all of which could be influ-
enced by climate change. Second, there is no reason for the base temperature to be constant
in space, as Bessec and Fouquau (2008) underscores the limitations of assuming a uniform
base temperature across different geographical regions. Finally, there is no reason to take
temperature as the sole weather indicator. Atalla et al. (2018); Lundström (2017); Staffell
et al. (2023) broaden the scope to include other weather indicators in the literature, high-
lighting the multifaceted nature of weather factors influencing energy consumption, including
consideration of the effects of wind and sunlight.

Building on this literature and relying on a statistical approach to select weather vari-
ables, we propose a new general weather indicator (GWI). We define GWI, as a vector of the
optimal linear combination of heating days variable (HDV) and cooling days variable (CDV)
of different weather variables among temperature, wind, sunlight duration, rain and cloudi-
ness. To construct this indicator we proposed a two-step procedure: First, for each variable,
we extract the optimal(s) threshold(s) that capture the non-linear relationship between the
energy consumption and this variable using K-means. To our knowledge, this is the first
time that K-means has been used to extract these thresholds. Compared to the standard
likelihood-based thresholding approach, the K-means approach is more flexible: one does not
need to specify a priori a functional form, between the energy consumption and the weather
variable and/or the number of regimes before proceeding with the estimation. In our partic-
ular case, we also found that the K-means approach leads to an estimate that is more robust
to spatial heterogeneity. Then, in a second step, the GWI is constructed by selecting, for
each energy consumption e.g. natural gas and electricity, the optimal linear combination of
these HDV and CDV using a LASSO penalization. We put forward the optimal specification
in the sample according to different criteria: likelihood-based and prediction error-based. As
an application of our approach, we studied electricity and natural gas consumption in France,
disaggregated by delivery mode.6 This disaggregation allows us to proxy different sectoral

5See Appendix A.1 for a complete literature review.
6Electricity and natural gas consumption account for 44% of total French final energy consumption. Both

consumptions are considered in the empirical analysis of this paper, assuming that natural gas and electricity
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activities from residential and services to heavy industry. We use both monthly and daily
energy consumption series: the monthly data span from January 2012 to December 2022, and
the daily low voltage energy consumption series span from January 2019 to December 2022.
Weather data are provided at a fine spatial scale, with either daily or monthly frequency,
depending on the indicator.

We find that, for any energy consumption type considered, the GWI is a linear combina-
tion of temperature HDV and sunlight HDV. Notably, for medium-voltage electricity, which
serves as a proxy for tertiary consumption, wind HDV and temperature CDV are also in-
cluded. For temperature HDV, we determined that the optimal base temperature is 15°C, for
low-voltage natural gas and electricity, regardless of the inclusion of other weather variables.
This deviates from both the value currently used in French national statistics (17°C), the
one recommended by the European statistical agency Eurostat, and the standard value in
the literature (18°C). Regarding other economic sectors, our results show that, at a monthly
aggregated level, none of the CDVs are significant except for temperature in the functional
form of medium-voltage electricity demand, highlighting the role of air conditioning in the
tertiary sector. For the industrial sector, we found that the response function of electricity
consumption to weather conditions is much weaker than for other sectors. This is largely be-
cause energy consumption depends on production processes unrelated to the need for heating
or cooling, in this specific sector. Additionally, we examine the relationship between tem-
perature and energy demand, focusing on two concepts: comfort zone and felt temperature.
First, comfort zone is defined as the range of temperatures within which economic agents do
not feel the need to adjust their environment through heating or cooling, leading to stable en-
ergy consumption. Second, we find that wind and sunlight duration, alongside temperature,
are important weather control variables for the residential sector. Thus, felt temperature
appears to have a greater influence on heating behavior than measured temperature itself.
As a byproduct of our results, we also estimate sectoral thermosensitivity for French energy
consumption at both monthly and daily levels.

We perform several checks to ensure the robustness of the GWI indicator, addressing
the three main criticisms commonly associated with standard HDD measures. First, we
challenge the standard HDD, and the GWI indicator in a rolling time windows analysis.
We found that the standard HDD based benchmarks are never selected against the GWI
base temperature. Second, we test the robustness of the threshold estimation to spatial
aggregation on residential electricity consumption: we study the 12 administrative regions
of France, covering a wide range of different climatic zones. We found that our approach is
robust to spatial aggregation, indeed we recover the same national threshold by averaging the
one from each region, but we obtain different regional values in line with the variability of the
French climatic zones. We also found cooling behavior (CDV on temperature) to be significant
for residential electricity consumption in one southern region of France, highlighting the role
of air conditioning in this region. Finally, we test the sensitivity of the GWI approach to
time aggregation, still on residential electricity consumption, we study and compare daily and
monthly frequency consumption. We find a greater significance of felt temperature compared

consumption react differently to weather variations. For example, it is unusual to use natural gas to cool
buildings in summer. In addition, the proposed approach could be extended to other energy sources such as
coal, oil, and biomass, but this is beyond the scope of this paper.
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to measured temperature also at the daily frequency.
The remainder of this paper is organized as follows. In Section (2), we present the energy

consumption data, weather data, and associated descriptive statistics. Section (3) describes
the methodological procedure used to construct the GWI. In Section (4), we develop our
main application, focusing on defining the country’s base temperature and analyzing the role
of other weather variables using monthly aggregated data. Further, in Section (4), we also
discuss the economic implications of our new estimation by analyzing the functional form of
France’s energy demand, introducing the concepts of the comfort zone and felt temperature.
We then propose new estimates of thermosensitivity of the energy demand by sector. In
Section (5), we conduct a series of robustness tests to demonstrate that the GWI addresses
the three main concerns of the HDD. We evaluate the GWI against various benchmarks over
time through a rolling time-window analysis at the monthly aggregated level, as well as using
daily data, and across regions with spatially disaggregated data. Finally, a concluding section
(6) is proposed.

2 Preliminary analysis of the data

2.1 Energy consumption

Since one of the goals of this paper is to develop a robust time series adjustment framework
to facilitate accurate monitoring of the impact of national policies aimed at reducing energy
consumption, our main application focuses on the monthly aggregated gas and electricity
consumption time series at the French national level, initially named [qgas

t ] and [qelec
t ], re-

spectively. The final consumption of electricity is divided into three series according to the
type of distribution. First, the low-voltage one, denoted [qLowe

t ], is defined as a response
to the demand of households and small businesses, providing power to everyday appliances
with a level voltage between 0.23 kV and 0.40 kV. Second, medium one, denoted [qMede

t ],
is described as a distribution made to facilitate the local transport of electricity to small
industries, SMEs and businesses with a level tension between 15 kV and 30 kV. Thirdly, high
voltage one, denoted as [qHighe

t ], for a voltage level ranging from 63 kV to 400 kV.
Natural gas energy consumption is decomposed into two series of final consumption,

namely: the distributed one denoted [qLowg

t ], defined as a network that transports gas from
transmission networks to final consumers not directly connected to transmission networks.
The transported one, denoted by [qHighg

t ], denotes networks that facilitate the import of gas
from terrestrial interconnections with neighbouring geographical areas and methane termi-
nals. These monthly energy consumption series can be used as a proxy for the energy demand
of the three main economic sectors: Industrial, Tertiary and Residential, for easier economic
interpretation, as described in Table 1.7 This database is publicly available, we mainly used
data that span from January 2012 to December 2022 (132 observations) from the Service des
Données et Etudes Statistiques (SDES).8

7See Table 14 for the sectoral distribution of each delivered energy type and Table 15 for the distribution
of total consumption across all different sectors in Appendix A.2

8Catalogue of energy data in France - https://www.statistiques.developpement-durable.gouv.fr
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Table 1: Time series of energy consumptions by economic sector

Series Sector Share
Electricity - Low voltage qLowe

t Proxy for residential consumption (80%)
Electricity - Medium voltage qMede

t Proxy for tertiary consumption (58%)
Electricity - High voltage qHighe

t Proxy for industrial consumption (81%)
Gas - Distributed q

Lowg

t Proxy for residential, tertiary and small industry consumption (74%)
Gas - Transported q

Highg

t Proxy for industrial consumption, gas-fired power plant included (94%)
Notes: Residential consumption represents 80% of the total electricity demand delivered via low voltage i.e. 80% share.

We also examine French residential electricity consumption at daily frequency and with
regional distribution.9 These daily electricity demand series for low voltage (< 36kVA) are
available from January 1, 2019, to December 31, 2022 from Enedis (1,461 observations). We
checked that the aggregate daily frequency consumption have the same distribution than
the monthly frequency one, at the source is not the same (see Table 17). The regional level
is characterized by the study of the 12 metropolitan administrative regions of France, with
the exception of Corse: Auvergne-Rhône-Alpes, Bourgogne-France-Comté, Bretagne, Centre-
Val de Loire, Grand Est, Hauts-de-France, Île-de-France, Normandie, Nouvelle-Aquitaine,
Occitanie, Pays de la Loire, Provence-Alpes-Côte d’Azur.10 The electricity consumption
of these administrative regions is made available by Enedis only from January 1, 2022, to
December 31, 2023 (730 observations by region).

2.2 Weather data

Weather data are provided by the official French weather and climate service Météo France
at a daily or monthly frequency, depending on the indicators.11 These data are available at
a fine spatial scale, as they are monitored by 539 weather stations throughout metropolitan
France. In line with the literature (see for example Kennard et al., 2022), each weather
station is weighted daily according to the population of the last available French census.
The weighting is used to reflect the population level and the associated level of heating and
cooling demand. In fact, the energy demand for a given temperature differs between countries
according to their respective population densities, as highlighted by Kennard et al. (2022).
It is important to note that the weighting by population census is particularly effective for
the residential sector. However, it can result in the emergence of spatial heterogeneity on a
more granular level for the tertiary and industrial sectors. For these sectors, weighting by
the number of people in employment may be seen as more appropriate. However, we test
these alternative weighting methods, such as employment-based weighting for industrial and
service sectors, and the results showed no significant differences in the weighted temperature
distributions, as confirmed by Wilcoxon significance tests.12 However, given the sensitivity
of the residential sector to weather conditions, we maintain the population-based weighting
for this general study. First, each administrative town in France is associated with the

9Natural gas consumption is not available at daily frequency
10Figure 14 shows the location of each administrative region on the map of mainland France.
11Catalogue of meteorological data in France - https://meteo.data.gouv.fr/
12See appendix B.1 for a comparison between weights sources.
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nearest weather station, i.e. a station can be associated with several towns, but each town
is associated with only one station. Then, the sum of the population of each one is added to
the corresponding station, giving each station a certain population weight. Finally, the daily
weather indicators are weighted as follows

weathers(pop) = weathers ∗ pops∑s
i=1 popi

Where s is one of the 539 stations in the area, pops is the population associated with the
station and ∑s

i=1 popi is the national population.
Based on the literature (Dell et al., 2014; Lundström, 2017), five different initial weather

indicators are chosen, see Table 2. The cloudiness [cloudiness] is measured as the number of
days in a month where the share of the cloudy sky is greater than or equal to 80%, the rainfall
[rain] is measured as the amount of rainfall in 24 hours (millimeters), the temperature [temp]
is measured as the mean temperature in 24 hours (degrees Celsius), the sunlight [sunlight] is
measured as the sunshine duration (minutes), and finally, the wind speed [wind] is measured
as the daily average of 10-minute periods during which the wind speed at 10 meters above
the ground is recorded (meters per second). It is important to note that the term sunshine
duration is used to describe the length of time during which the ground surface is irradiated
by direct solar radiation. This duration can be considered an indicator of the frequency of
favourable weather conditions. Consequently, it not only reflects the difference in sunshine
duration due to the Earth’s rotation, but also takes into account days, even in summer, when
solar radiation does not directly irradiate the ground surface due to overcast skies.

Table 2: Weather time-series

Series Units (/24h)
Cloudiness cloud Number of days per month with overcast > 80%

Rain rain Rain level in millimeters
Temperature temp Average temperature in °C

Sunlight sunlight Duration of sunshine in minutes
Wind wind Wind speed in m/s

2.3 Descriptive statistics

Figure 1-(a), displays the monthly aggregated natural gas consumption in France qgas
t , with

the part due to the distributed qLowg

t and the transported qHighg

t . The data indicates a
seasonal pattern in natural gas consumption, primarily due to the distributed portion. Figure
1-(b), displays the monthly aggregated electricity in France qelec

t , with contributions from
low voltage qLowe

t , medium voltage qMede
t , and high voltage qHighe

t . It reveals a similar
seasonal pattern, mainly driven by low voltage demand.13 In the Appendix A.3, we show
that this similar seasonal pattern appears at the daily frequency for electricity (see Figure
12 in Appendix A.3).

13These seasonal patterns are confirmed by the analysis of the autocorrelation function (ACF) available
Figure 11 in Appendix A.3
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Figure 1: Sectoral energy demand time-series
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Table 3 shows the correlation between the selected energy consumption time series and
the five initial weather indicators. There is a strong correlation between monthly energy con-
sumption and temperature because of the large amount of energy needed to heat buildings in
winter. However, other weather indicators may also correlate with energy consumption. This
simple correlation exercise shows weaker correlations for cloudiness and rain. Temperature
has a strong negative correlation with energy demand, about -0.96 and -0.91 for total gas
and electricity consumption, respectively. Sunlight has a similar relationship, with a corre-
lation of -0.83 and -0.79 with total gas and electricity consumption, respectively. However,
sunlight is also strongly correlated with the level of temperature, so these indicators may
carry a similar signal. Wind speed also has a significant positive correlation at the monthly
level, meaning that an increase in wind speed leads to more energy demand, which can be
due to air infiltration of buildings, as highlighted in the literature (Sherman, 1987; Sinnott,
2016). The correlation with total gas and electricity consumption is around 0.53 and 0.46
respectively.
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At the sectoral disaggregated level, the correlations reveal two main singular behaviors.
First, qHighe

t exhibits very weak correlations with weather factors, including temperature.
This aligns with the expectation of non-significant weather-related variations in electricity
consumption from the industrial sector. In this sector, the share of heating using electricity is
assumed to be minimal, as electricity is predominantly used for production processes that are
largely independent of weather conditions. A visual inspection of the relationship between
qHighe

t and temperature supports this notion (see Figure 2-(c)). Second, the correlation with
temperature is notably weaker for qMede

t than for other energy types and sectors. This can be
attributed to a symmetric effect between heating and cooling behaviors, where both positive
and negative correlations are observed. However, the negative effect dominates, resulting in
an overall negative correlation (see Figure 2-(b)). These findings underscore the potential
limitations of a correlation-based approach when the relationship between variables is strongly
non-linear and highlight the necessity for a robust methodology.

Table 3: Correlation between weather and energy time series

temp sunlight wind rain cloudiness

q
Lowg

t -0.969 -0.825 0.556 0.112 -0.020
(0.000) (0.000) (0.000) (0.063) (0.739)

q
Highg

t -0.822 -0.764 0.331 0.069 -0.057
(0.000) (0.000) (0.000) (0.252) (0.345)

qLowe
t -0.934 -0.807 0.498 0.130 0.008

(0.000) (0.000) (0.000) (0.031) (0.896)
qMede

t -0.410 -0.324 0.031 -0.064 0.435
(0.000) (0.000) (0.608) (0.292) (0.000)

qHighe
t -0.012 -0.043 0.164 0.044 -0.017

(0.848) (0.479) (0.006) (0.465) (0.782)
qgas

t -0.966 -0.833 0.531 0.107 -0.027
(0.000) (0.000) (0.000) (0.075) (0.656)

qelec
t -0.916 -0.790 0.466 0.100 0.134

(0.000) (0.000) (0.000) (0.097) (0.026)
Notes : The table shows the correlation coefficients and the p-values
associated. The columns are ranked according to the level of corre-
lation.The p-values represent the probability that the null hypothesis,
which represents a null correlation, is non-rejected. Thus a null p-
value is interpreted as a correlation significantly different from 0. The
variablesqgas

t andqelec
t represent the sums of the respective variables

q
Lowg

t , q
Highg

t and qLowe
t ,qMede

t ,qHighe

t . The data are at a monthly
frequency, spanning from January 2000 to December 2022.

Then, the weather data correlation with energy is also available at the daily frequency
in Table 18 in Appendix A.3, mainly confirm the results from Table 3. The temperature is
the main driver for energy demand but, as highlighted in Table 3, the amount of sunlight
or the wind speed are also correlated and could influence the consumption, and should be
considered in the pool of possible weather indicators that influence energy consumption.

9



3 Methodology

In this section, we present our proposed framework for adjusting energy consumption to
seasonal and weather variations.

3.1 Seasonal adjustment

To construct seasonally adjusted statistics, accounting for both working-day effects and
weather variations, the recommended econometric approach is based on regSARIMA method-
ology.14 While the regressive component includes a set of regressors explaining both working-
day effects and weather variations, the SARIMA component of the model is tailored to extract
the seasonal patterns from the remaining variations in the regression stage. This model can
be summarized as follows:{

qt = βGWIqt + β2lyt + β3wdt + β4D03−2020 + xt

Φ(Bs)δ(Bs)xt = Θ(Bs)at
(1)

Equation (1) describes the model with qt the time series to be adjusted, lyt is a vector
of dummy variables accounting for the leap year in the specification, wdt are two related
variables accounting for working days, D03−2020 is a transitory shock that accounts for the
COVID-19 crisis, and GWIt is the general weather indicator defined in section 3.2.2. This
indicator may include more than one climate variable, and thus the estimated β may be a
vector of parameters.15

The second part of the model is derived from the seasonal term of the xt residuals and
is defined by the SARIMA process, along a parameter denoted S, which takes S = 12 in a
monthly setup. SARIMA can be decomposed into two stationary polynomials, the autore-
gressive Φ(Bs) and the moving average δ(Bs), and then into a nonstationary polynomial, the
difference process Θ(Bs). The variations of the series that are not explained by the regres-
sors nor by the SARIMA process are reflected in the last term at, in other words, at can be
described as the adjusted time series following a N(µa, σ2

a) distribution centered around µa,
the mean monthly energy demand. The estimation of the model (1) is done by maximum
likelihood with the function X13 from Quartier-La-Tente et al. (2024).

3.2 Weather adjustement

Traditionally, the concepts of Heating Degree Days (HDD) (2) and Cooling Degree Days
(CDD) (3) have been adopted as a solution to explain the seasonal patterns of energy de-
mand due to weather variations. The calculation of CDD is based on the concept of base

14This approach is recommended by Eurostat. The European agency is responsible for developing, pro-
ducing, and disseminating European statistics. It sets and enforces statistical standards, methods, and
procedures, ensuring the production of comparable data across the European Union for various audiences.
Eurostat’s role is defined in Article 6 of Regulation (EC) No 223/2009 of the European Parliament and of
the Council of March 11, 2009, on European Statistics.

15In this specification, it is worth noting that the term GWIt is centred around the so-called Null Unified
Days indicators, which is the average of past GWIs over two decades.

10



temperature, the indicator is calculated if and only if the temperature at time t is below
(above) the base temperature. This method dates back to the 1870s in studies of agricultural
yields and is now widely used to measure adjusted energy demand.

HDD =
{

Tbase − Tt if Tt < Tbase

0 otherwise
(2)

CDD =
{

Tt − Tbase if Tt > Tbase

0 otherwise
(3)

Various econometric specifications have been tested in the literature (see Fazeli et al.,
2016, for a comprehensive review) to estimate the relationship between energy demand and
temperature level. These approaches can be summarized as follows: the first strand of the
literature focuses on linear and non-linear parametric methods. As mentioned above, the
historical method is to model a linear specification with heating degree days (HDD) and
cooling degree days (CDD). Initially, these models used a single balance point temperature
for heating and cooling (Mitchell, 1984). For example, U.S. studies have often used 65°F
(18.3°C) as the equilibrium point (Considine, 2000; De Dear and Brager, 2001; Donovan and
Fischer, 1976; Pardo and Valor, 2002; Thom, 1954), while global analyses have favored 18°C
(Isaac and Van Vuuren, 2009; Labriet, 2013). However, other studies have explored different
balance point temperatures to better capture variations in energy use, using iterative methods
(Kissock et al., 2003; Rüth and Lin, 2006).

Non-linear models have been developed to consider the complexities of consumer behavior
and heating system capacities. With these models the level of temperatures itself is used with
non-linear transformation such as polynomials. For example, Henley and Peirson (1997)
found a polynomial estimation to better fit data on electrical space heating compared to
linear models. Asadoorian et al. (2008) and Gelegenis (2009) used log-linear formulations
and polynomials to estimate temperature elasticity in electricity demand.

The second part of the literature uses a semi/non-parametric method, i.e. the relationship
between energy demand and temperature is not set a priori, but is defined by the model.
Early on, Engle et al. (1986) introduced a semi-parametric regression method that com-
bines linear elements for income and energy prices with cubic and piecewise linear splines for
weather variables, this allows flexible modeling of the temperature-energy demand relation-
ship. Carcedo and Vicéns-Otero (2005) applied the Logistic Smooth Transition Regression
(LSTR) model, which effectively captures the smooth response of electricity demand to tem-
perature variations, but also provides a method for validating the temperature thresholds
traditionally used. Bessec and Fouquau (2008) extended this method to analyze electricity
demand in EU member states, proving that the relationship between energy demand and
outside temperature is non-linear for each country in the study. Later, Hurn et al. (2016)
also used LSTR modeling to asses the effects of deregulation in the electricity of market,
controlling by the temperature variations.

Our econometric framework combines these two strands of the literature by introducing
the new general heating weather indicator GWIqt , specific for one energy demand qt. This
indicator is defined as the vector of the optimal linear combination of the K heating days
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variables HDV{qt,wk
t =wk

base}. Where for HDV{qt,wk
t =wk

base} we have k ∈ 1, . . . , K and t ∈
1, . . . , T with T the number of observations and K the number of weather variables, among
temperature, wind, sunlight duration, rain and cloudiness.

Building on the standard definition of the (HDD) (2), we define a heating days variable
(HDV{qt,wt=wk

base}) for one specific weather variable (wk
t ) and one energy demand qt as:

HDV{qt,wk
t =wk

base} =
{

wk
base − wk

t if sign(ρ{qt,wk
t }) ∗ (wk

t > wk
base)

0 otherwise
(4)

where wk
base is the optimal threshold(s) extracted using K-means that capture the non-linear

relationship between the energy demand (qt) and the k-th weather variable wk
t (see Figure

2). To define one HDV{qt,wk
t =wk

base}, it is necessary to introduce the sign from the correlation
between the energy demand qt and the weather indicator wk

t . For example for the production
of standard HDD (or here, HDV where wk

t is the temperature), the correlation between the
energy demand and the temperature is negative, i.e. that lower temperature induces an
increase in demand. Thus, the variable is different from zero if −(wk

t > wk
base), in other

terms, if (wk
t < wk

base). At the opposite, for the production of the wind HDV, the correlation
between the energy demand and the wind is positive i.e. that stronger wind speed induces an
increase in demand. Thus, the variable is different from zero if (wk

t > wk
base). The literature,

also highlights the role of the air-conditioning (see Mitchell, 1984). We enhance our GWI, to
take also into account this cooling effect. With similar notation of (4), we defined the CDV
as follows:

CDV{qt,wk
t =wk

base} =
{

wk
t − wk

base if sign(ρ{qt,wk
t }) ∗ (wk

t > wk
base)

0 otherwise
(5)

It is important to emphasize that wk
base in (4) can differ from wk

base in (5). For example, there
could be a different value wk

base2 for the HDV threshold where heating begins and another
value wk

base1 for the CDV threshold where cooling starts.
The next subsections present the K-means procedure to define potential thresholds for

one couple of qt and wk
t and then the LASSO penalization that selects the optimal linear

combination of both HDV and CDV for one qt.

3.2.1 Numbers of regimes and threshold extraction

In time series analysis, a regime refers to a specific phase or period during which the under-
lying behavior or dynamics of the system being studied remain relatively consistent. In our
study, a regime represents a distinct state or behavior in the relationship between weather
variables and energy demand. Regime-switching models are often used to capture transitions
between different states in the data. In this section we broadly recall the main methods to
detect regime switch in the applied literature and introduce clustering as an alternative tool
to extract regime switching.

A first approach in the literature to define the energy demand response function to tem-
perature is drawn upon Carcedo and Vicéns-Otero (2005) and Bessec and Fouquau (2008),
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which employs a Smooth Transition AR (STAR) method based on a predetermined def-
inition of the data generation function. However, a smooth method induces an a priori
definition of a function that best describes the relation between the series. One can also
use, a non-smooth methodology grounded in the method of multivariate Threshold Vector
Autoregression (TVAR) from Lo and Zivot (2001), based on the Self-extracting AR (SETAR)
modelling (Chan et al., 1985). However, estimating thresholds in this setup is prone to sen-
sitivity towards outliers or noise present in the data, which can lead to potentially biased
or inconsistent estimates. Incorrect specification of the number of thresholds may result in
misspecified models that fail to accurately capture the genuine underlying dynamics of the
data. Empirically, it is uncommon to define more than three regimes with the associated
two thresholds in a TVAR modelling because it becomes computationally heavy: every time
a regime is added it strongly increases the size of the grid search. Moreover, in this context
of the relationship between climate and energy demand, imposing a predetermined number
of regimes a priori may overlook the true complexity of the relationship and means relying
directly on visual representation and the existing shape of the relationship.16 This under-
scores the need for a thorough and flexible approach to the model specification that allows
for the discovery of the most appropriate response functional form and the number of regimes
to accurately characterize this relationship. To do so, our approach relies on unsupervised
classification and in particular using time-series clustering methods.

More formally, our time-series clustering can be defined as follows: given our dataset
of a vector of two time-series containing qt, and one of the n weather variables denoted
by wk

t . We define D =
{
qt, wk

t

}
, and we find an unsupervised partitioning of D into C =

{C1, C2, . . . , CN}, where N is a hyperparameter correspond to the number of clusters that
you need to set a priori. We make this partitioning in such a way that homogeneous time
series are grouped based on a certain similarity measure (See Liao, 2005; Aghabozorgi et al.,
2015, for a comprehensive review on the definition and application of clustering with time
series.) 17

Drawing on the seminal K-means algorithm (MacQueen, 1967), we operate iteratively
assigning each data point to the nearest cluster centroid based on the Euclidean distance
metric. Subsequently, the centroids are recalculated as the mean of the data points assigned
to each cluster. This iterative process continues until convergence, resulting in clusters that
exhibit similar characteristics or behaviors (see Algorithm 1).

16In appendix B.3, we perform a robustness analysis using the TVAR methodology. We find our approach
is robust at the French national level, extracting similar thresholds. However, moving to the desegregated
demand by regions, the heterogeneity of climate leads to the apparition of a cooling behavior and thus, for
a constant number of regimes, the extracted threshold using the TVAR methodology is biased.

17Our application of clustering on time-series is similar to the Market Regime Clustering Problem (MRPC)
in Finance (Horvath et al., 2021), MRPC involves segmenting returns into different groups or regimes, each
characterized by distinct underlying distributions. Another close methodology is used by Greevy et al. (2024)
to detect regime switching in finance time-series, but the clustering algorithm is used on statistics distribution
variables rather than the series themselves.
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Algorithm 1: k-means algorithm
Data: Set of T data points D = {qt, wk

t } in R2, number of clusters N
Result: N clusters C = {C1, C2, . . . , CN}

1 Initialization: Choose N initial cluster centroids randomly: C = {c1, c2, . . . , cN};
2 repeat
3 for each data point dt = (qt, wk

t ) do
4 Assign dt to the nearest cluster centroid:

argmincj∈C ∥dt − cj∥2

5 end
6 Recalculate the cluster centroids as the mean of the data points assigned to each

cluster;
7 for each cluster Cj do
8 cj = 1

|Sj |
∑

dt∈Sj
dt where Sj is the set of data points assigned to cluster Cj;

9 end
10 until convergence;

One challenge in using the K-means algorithm is the requirement to pre-assign the hyper-
parameters, the N number of clusters, which may not always be readily available or feasible
to determine in real-world applications. This limitation can lower the algorithm’s ability to
produce natural clustering results and is recognized as one of its drawbacks. However, a
potential solution, particularly when the data dimensionality is low, is to use the Standard
Deviation Index. This index proposed by Halkidi et al. (2000) provides a robust validity
measure that effectively balances compactness and separation. Their experimental study
demonstrates that the SD index achieves the best trade-off between these two key criteria,
making it a reliable choice for evaluating and selecting optimal clustering schemes.
Given clusters C1, C2, . . . , Ck with respective average intra-cluster variance σ1, σ2, . . . , σk, the
standard deviation index can be defined as:

SD = α( 1
N

N∑
k=1

σk

σ
) + min d(Ck, Ci)

The goal is to minimize the index as a lower value indicates clusters that are more compact
and well-separated, which is desired in clustering tasks for ensuring clear and meaningful
group differentiation.

3.2.2 Penalization procedure to construct the GWI

Once the pool of all the K weather variable-related HVD and CDV indicators is constructed, a
variable selection process is employed through penalization. Penalization models incorporate
a hyperparameter denoted as λ within the error term minimization process, to select the
optimal linear combination among the regressors.

14



{
qt = β′Xt + εt

min ∑t(qt − q̂t)2 + λ||β||k
(6)

Where qt, is one energy demand variable of T observations, β = [β1, · · · , β2∗K ] is 2 ∗
K × 1 vector of the estimated coefficient of our linear penalization regression, and Xt =[
HV Dqt,w1

t =w1
base

, · · · , HV Dqt,wK
t =wK

base
, CV Dqt,w1

t =w1
base

, · · · , CV Dqt,wK
t =wK

base

]
is a 2 ∗ K × T

regressor weather vector, containing the HDV and the CDV.18 εt is the residuals vector
following a N(0, σ2), where σ2 is variance matrix of the residuals.

The penalization model can be described as in equation (6) with λ the level of penalization,
the higher λ̂ the more penalized the model, the lower the λ̂ the less penalized the model.
||β||k reflects the norm, which is defined as the LASSO (l1) norm in our approach, qt denotes
the initial seasonal time series and HDVt is the weather indicator.19 For robustness purposes,
at each iterative step, we run 100 batches of estimation by varying the λ value in a range
between 0.001 and 1 to test different levels of penalty. Then the mean of the 100 estimations
is computed for each variable of the initial pool.

Denoted the optimal sparse penalized β∗, containing some zeros for the weather variables
that are not selected by the LASSO procedure, we defined the GWIqt as:

GW Iqt =
[

1β∗
1 ̸=0HV D

qt,w1
t

=w1
base

, · · · , 1β∗
K

̸=0HV D
qt,wK

t
=wK

base

, 1β∗
1 ̸=0CV D

qt,w1
t

=w1
base

, · · · , 1β∗
K

̸=0CV D
qt,wK

t
=wK

base

]
(7)

where 1β∗
k

̸=0, is a dummies variable taking the value 1, if the corresponding HV Dqt,wk
t =wk

base

is selected and 0 if is not.

4 Empirical results

The goal of this paper is to develop a robust time series adjustment framework to facilitate
accurate monitoring of the impact of national policies aimed at reducing energy consumption.
Our primary application focuses on the analysis of a monthly database from January 2012
to December 2022. This extensive dataset allows us to study the general behavior of energy
demand in relation to weather variations over a ten-year period.

4.1 A country specific base temperature

To illustrate how our proposed K-means-based approach estimates the optimal wbase for
an HDVqt variable with respect to a demand qt, we first examine the relationship between

18It is also possible to include all interaction terms between different HDVs (or CDVs). In our empirical
illustration, none of these terms is selected, so we choose not to mention this in the methodology section for
the sake of clarity.

19An argument could be made for using Ridge penalization instead of LASSO. However, LASSO was
selected for variable selection because it excludes less relevant variables by shrinking their coefficients to zero.
This approach enhances model interpretability and aligns with our goal of selecting only the most significant
predictors, unlike Ridge regression, which retains all variables in the model by applying an l2 norm.
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the sectoral energy demands and the temperature variable. Figure 2 shows the relation-
ship between ordered sectoral energy demand and ordered temperature, for natural gas and
electricity. In this figure, the different dashed lines represent the extracted base thresholds
wbase reported in the first column of Table 4 - Step 1, and the different colours represent the
regimes defined by the clustering algorithm.20 For temperature, Table 4 - Step 1 showcase
two thresholds that represent base temperatures associated with distinct behavioral shifts
in energy demand—one for moderate temperature changes and another for extremely cold
conditions. This dual threshold was not at first expected but has already been suggested by
Dubin (2008) relying on household panel data.21 This result provides a more nuanced view
of temperature-sensitive demand, which can inform public policies targeting energy efficiency
and resource allocation under different weather conditions. Table 4 - Step 2, shows the value
for the HDV related to temperature threshold is on average 15°C which is different from the
thresholds that are commonly used in France for official statistics adjustment (17°C), the
most commonly used in the literature (18°), or the recommended one by Eurostat. We define
HDVtemp=EU for further analysis developed in the rest of the paper, as the one recommended
by Eurostat, and constructed as:

HDVtemp=EU =
{

T18 − Tt if Tt < T15
0 otherwise

(8)

Table 4: General Weather Indicator - Monthly

Step 1
Temperature Wind Sunlight Rain Cloudiness

q
Lowg

t 9; 15 3.5 378 2; 3 23; 24; 28
q

Highg

t 14 3.5 378 2; 3 23; 25; 28
qLowe

t 9; 15 3.5 378 2; 3 23.5; 24; 28
qMede

t 10; 15 3; 3.5; 4 363 2; 2.5; 4 23; 24; 28
qHighe

t 12; 13; 22 3; 3.5; 4 275; 300; 623 2;3 22, 24

Step 2
Temperature Wind Sunlight Rain Cloudiness

q
Lowg

t 15 - 378 - -
q

Highg

t 14 - 378 - -
qLowe

t 15 - 378 - -
qMede

t 15 3 363 - -
qHighe

t 13 3;4 - 2;3 -
Notes: Monthly energy consumption and weather data span the period from January 2012 to December 2022.

4.2 The role of weather variables beyond temperature

To highlight the role of the other weather variable, we estimate different wbase for all listed
weather variables (wt) in our dataset (see section 2 for the full list) using the GWI procedure

20For details regarding selecting the initial number of centroïd, please refer to appendix A.5.
21Please refer to appendix A.6 for a theoretical visual representation of a functional form with two thresh-

olds.
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Figure 2: Clustering analysis of monthly energy response to temperature
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t (d) q

Lowg

t (e) q
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t . These figures are a visual representation of the
K-means algorithm results. The dashed lines represent the regime-switching point, or base temperature and the
clusters represent the different regimes. Monthly energy demand and weather data span the period from January
2012 to December 2022.

from section 3. Table 4 - Step 1 shows the estimated threshold for all considered variables,
i.e. cloudiness, rain, sunlight and wind speed.22 Then, our penalty selection procedure
allows to define the GWIqt that is primarily composed of temperature, wind speed and
sunlight duration, see Table 4 - Step 2. After constructing the GWIqt for each qt, we analyze
the output of the seasonal adjustment process with four different weather indicators : the
full GWI that is denoted by HDVtemp=GW I , the optimal temperature from GWI denoted
HDVtemp=15 and two benchmarks namely we consider HDVtemp=18, and HDVtemp=EU .23

In Table 5, we compare the four adjustment specifications, in order to showcase that the
optimal specification is represented by the GWI. This table presents key metrics, including ad-
justed R2 (R2

a), Akaike Information Criterion (AIC), Root Mean Square Error (RMSE), and
the p-value of the Ljung-Box test over the residuals (p.valueQ(1)) to test the autocorrelation

22Figures showing the relationship between the ordered energy demand and the considered weather variable
are available in Appendix A.4

23For simplicity, the different specifications are be reported as : GWI; 15; 18; EU in tables or figures.
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and the squared the residuals (p.valueQ(2)) to test the presence of heteroscedasticity. Addi-
tionally, we include the p-value of a Diebold and Mariano (1995)’s test (p.valueDM(18|GWI))
to statistically assess predictive accuracy .The choice of these metrics serves two main pur-
poses: first, the AIC and Ljung-Box test ensure the selection of the best specification in
terms of fitting the data. Consistent with Cui et al. (2023), the AIC is identified as the
most effective criterion when working with weather-related data. Second, the RMSE and
the Diebold-Mariano test focus on forecast-oriented performance. The Diebold-Mariano test
plays a critical role in comparing predictive performances. Here, the null hypothesis assumes
that the two models have equal predictive accuracy, while the alternative hypothesis suggests
that the predictive performance of the GWI-based model is superior. Specifically, the test
evaluates whether the average loss using HDVtemp=18 is greater than using HDVtemp=GW I as
weather control variable. Results from the test allow us to reject the null hypothesis, indicat-
ing that the GWI specification offers better predictive accuracy compared to the traditional
HDD approach using 18°C as the base temperature. Furthermore, across all metrics, the
GWI specification consistently emerges as the most optimal model. This is evidenced by its
lower AIC and RMSE values, along with improved residual diagnostics that reduce autocor-
relation, increase the independence of residuals, and produce a distribution more centered
around zero. The Ljung-Box tests further confirms the independence of residuals, for the
GWI specification, and suggests an absence of detectable autocorrelation and conditional
heteroscedasticity, in contrast to the traditional HDD approaches.

Figure 3 and 4 showcase a top and a bottom panel, top panels display the adjusted
time-series for the four different specifications and the bottom panels display the residuals
distributions. These figures further support that the GWI, by including a more comprehensive
set of weather variables, aims to capture more variability in energy consumption, as it reflects
a broader spectrum of weather impacts that influence seasonal energy needs. Bottom panels
further supports the effectiveness of the GWI by exhibiting a more concentrated distribution
around zero, indicating a lower residual variance. This tighter fit implies that the GWI more
accurately aligns with observed demand patterns, reducing the unexplained variance relative
to the other specifications. The autocorrelation plot shows that the GWI method achieves
lower residual autocorrelation across time periods compared to the HDD-based approaches.
This suggests that GWI is more robust and effectively captures temporal dynamics in energy
demand.
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Table 5: Key metrics to highlight the optimal specification

q
Lowg

t q
Highg

t qLowe
t qMede

t qHighe
t

R2
a(18) 0.9949 0.9157 0.9927 0.9573 0.9145

R2
a(EU) 0.9949 0.9172 0.9929 0.9585 0.9168

R2
a(15) 0.9966 0.9253 0.9949 0.9604 0.9185

R2
a(GWI) 0.9968 0.9341 0.9951 0.9691 0.9162

AIC(18) 374 355 176 14 -96
AIC(EU) 376 355 175 11 -99
AIC(15) 329 343 132 4 -102
AIC(GWI) 322 339 127 -19 -97
RMSE(18) 1.0561 0.9214 0.4443 0.2252 0.1463
RMSE(EU) 1.0601 0.9131 0.4371 0.2220 0.1443
RMSE(15) 0.8666 0.8673 0.3722 0.2167 0.1429
RMSE(GWI) 0.8353 0.8187 0.3636 0.1901 0.1442
p.valueQ(1)(18) 0.0911 0.8771 0.9671 0.3087 0.4593
p.valueQ(1)(EU) 0.1539 0.8179 0.9832 0.3114 0.5022
p.valueQ(1)(15) 0.2903 0.9316 0.9821 0.8469 0.4760
p.valueQ(1)(GWI) 0.2588 0.9725 0.9883 0.9681 0.8453
p.valueQ(2)(18) 0.9881 0.8488 0.9164 0.0905 0.0815
p.valueQ(2)(EU) 0.9722 0.8959 0.8267 0.0500 0.0896
p.valueQ(2)(15) 0.9667 0.8914 0.6383 0.3066 0.1339
p.valueQ(2)(GWI) 0.9615 0.9677 0.5248 0.8562 0.5245
p.valueDM(18|15) 0.0012 0.0043 0.0004 0.177 0.0382
p.valueDM(18|GWI) 0.0002 0.0016 0.0001 0.0018 0.1286
N 132 132 132 132 132
Notes: The table showcases results for five different metrics namely the adjusted R2 (R2

a), Akaike Information
Criterion (AIC), Root Mean Square Error (RMSE), the p-value of the Ljung-Box test (p.valueQ),and the
p-value for Diebold-Mariano tests (p.valueDM ). The analysis uses monthly energy consumption and weather
data spanning the period from January 2012 to December 2022.
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Figure 3: Seasonal adjustment and residuals distributions for qg
t
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Notes : The figure displays seasonal adjustment and residual distributions for (a) q
Lowg

t (b) q
Medg

t . The top
panel shows the seasonally adjusted time-series for four specifications. The bottom panels illustrate the residual
distributions, with the left panel showing residual density and the right panel presenting residual autocorrelation
by month.
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Figure 4: Seasonal adjustment and residuals distributions for qe
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Notes : The figure displays seasonal adjustment and residual distributions for (a) qLowe
t (b) qMede

t . The top
panel shows the seasonally adjusted time-series for four specifications. The bottom panels illustrate the residual
distributions, with the left panel showing residual density and the right panel presenting residual autocorrelation
by month.
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4.3 Economic implications

This section presents two principal economic implications of the empirical results. Firstly,
the shape of the relationship between energy demand and weather variables is analyzed.
This contributes to a body of literature that characterizes consumer behavior in response
to weather variations across a year (see for exemple Engle et al., 1986; Dubin, 2008). This
provides insights into the need for heating and/or cooling, as well as the existence of a so-
called comfort zone where energy use is not needed to regulate building temperature. We then
discuss the impact of our approach on the estimated weather elasticity, which is crucial for
policymakers and energy providers as it informs strategies for energy supply management and
infrastructure planning (see for example Chaton, 2024; Giraudet et al., 2021; Thao Khamsing
et al., 2016). By quantifying the manner in which energy demand responds to weather
fluctuations, it facilitates the development of more accurate predictive models, which can be
used to mitigate the effects of extreme weather events on energy systems (see Sgarlato and
Ziel, 2023).

4.3.1 Functional form of France energy demand

To refers to the form of the relationship between temperature and energy demand, the liter-
ature relies on letters. The first form was describe by Jäger (1983) and define as a V-Shaped
(see Figure 5-a) with a unique balance point between cooling and heating with thus no com-
fort zone. Then, the concept of comfort zone was introduced by Carcedo and Vicéns-Otero
(2005) and the relationship then described as U-Shaped (see Figure 5-b). However, for spe-
cific country such as France, where the use of cooling device is not usual, the U-Shaped
relationship becomes L-Shaped as the cooling behavior is not relevant anymore (see Figure
5-c). To go further, both U-Shaped and L-Shaped relationship exhibit a concept of "comfort
zone", highlighted in red in Figure 5. This “comfort zone” refers to the range of temperatures
within which economic agents experience no significant behavioral response to temperature
variation. Within this range, individuals and organizations do not perceive the need to adjust
their energy consumption to heat or cool their environment. In other words, energy demand
remains relatively stable because conditions are naturally perceived as comfortable without
additional intervention (Eskeland and Mideksa, 2010; Hekkenberg et al., 2009; Carcedo and
Vicéns-Otero, 2005). Based on the literature, the usual boundaries for the comfort zone are
temperatures below 18°C, where heating becomes necessary, and above 21°C, where cooling
becomes relevant.

In this context, our study aims to define the functional form for France based on empirical
evidence and to redefine the comfort zone boundaries. Similar to the estimates presented in
Table 6, Figure 6 illustrates the two main empirical functional forms for France. The first
represents an L-shaped function with a single balance point at 15°C, marking the transition
between the heating zone and the comfort zone. The second represents a V-shaped function,
observed only in electricity demand from the tertiary sector, again with a single balance point
marking the transition between the heating and cooling zones. This V-shaped function sug-
gests that there is no significant comfort zone and that economic agents, on average, switch
directly from heating to cooling in the tertiary sector.
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Figure 5: Functional form from the literature
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Beyond temperature, however, energy demand is also influenced by other environmen-
tal variables, such as wind speed and sunlight, which contribute to the broader concept of
“felt temperature.” This concept reflects how individuals perceive environmental conditions
based not only on temperature but also on additional factors that affect thermal comfort. As
demonstrated in Figure 7, wind speed (Figure 7-b) exhibits a positive correlation with en-
ergy demand, as higher wind speeds increase heat loss and create a greater need for heating.
Similarly, sunlight (Figure 7-a) inversely affects energy demand, as increased solar radiation
reduces heating requirements by naturally warming indoor and outdoor spaces. These find-
ings suggest that models of energy demand should incorporate these additional variables to
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account for their impact on perceived thermal comfort, thereby providing a more nuanced
understanding of the determinants of energy demand.

Figure 7: Functional form from empirical evidences - Beyond temperature
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4.3.2 Weather elasticities estimate

The coefficients reported in Table 6 represent the thermosensitivity estimates expressed in
TWh/HDV (resp. TWh/CDV) that can be interpreted as the increase of energy demand in
TWH when the HDV (resp. CDV) increase of 1°C, ceteris paribus. For example, if there were
one extra heating degree-day per day for an entire month, residential electricity consumption
(qLowe

t ) would rise up to 1.014 TWh (0.0338*30 = 1.014, see Table 5). Additionally, the
specification incorporates the estimation of the COVID-19 effect D03−2020, the estimated co-
efficient is both significant and negative, except for residential electricity demand. This result
aligns with expectations, as confinement policies increased residential energy consumption
while reducing demand in other sectors due to economic slowdowns and reduced industrial
activity.

The thermosensitivity coefficients provide valuable insights into sector-specific weather
elasticities. These results underscore the importance of sector-specific analyses of weather
elasticities in energy demand. Indeed, the residential sector emerges as the most thermosen-
sitive, as a significant share of its energy consumption is dedicated to heating. According
to the GWI specification, thermosensitivity in this sector is reflected in higher coefficients
across all quantiles compared to other sectors, demonstrating a pronounced responsiveness
to weather variations. Electricity demand in the residential sector exhibits a relatively lower
thermosensitivity than heating-related energy sources, as electricity is also used extensively
for non-heating purposes such as powering household appliances. In contrast, the tertiary
sector shows lower overall thermosensitivity CGDD (2023). While the coefficients for heating-
related energy sources such as natural gas or district heating are comparable to the residential
sector, the electricity demand in this sector is less responsive to weather changes. This is
consistent with the dominance of non-heating uses of electricity, including lighting, office
equipment, and other specific applications. These sector-specific results highlight the ef-
fectiveness of the GWI approach in capturing thermosensitivity patterns and point to its
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potential for disaggregated analyses.

Table 6: Monthly estimates of Thermosensitivity (TWh/HDV)

q
Lowg

t q
Highg

t qLowe
t qMede

t qHighe
t

HDVtemp=GW I 0.0928*** 0.0230*** 0.0338*** 0.0086*** 0.0023**
(0.0020) (0.0020) (0.0009) (0.0005) (0.0003)

CDVtemp=GW I 0.0064**
(0.0008)

D03−2020 -1.6702* -2.2721* 0.1710 -1.8622** -0.8645**
(0.6566) (0.9600) (0.2807) (0.2034) (0.1417)

N 132 132 132 132 132
Notes: The estimates are derived from a regSARIMA model, with monthly energy consumption levels (in TWh) as
the dependent variable. The table presents estimates for temperature components that significantly impact energy
consumption and the Standard errors associated with each coefficient are provided in brackets. Each regression
incorporates fixed SARIMA components to capture cyclic patterns, as well as fixed control variables for business days,
the COVID period, leap years, weekends, and holiday effects. For the SARIMA component, the polynomial orders δ,
Φ, and Θ are determined and fixed based on the Autocorrelation Function (ACF) and Partial Autocorrelation Function
(PACF). As a result, the process is defined as (1, 0, 1)(0, 1, 1). The analysis uses monthly energy consumption and
weather data spanning the period from January 2012 to December 2022.

We now focus on thermosensitivity in the industrial sector. First, it is important to note
that industrial gas consumption behaves differently from electricity consumption because it
includes gas-fired power plants that support electricity supply during periods of low tem-
peratures, thereby inducing stronger thermosensitivity with a coefficient estimated at 0.023
TWh/HDV, in contrast to electricity, which has a coefficient of 0.002 TWh/HDV.24 Focusing
on electricity consumption qHighe

t in the industrial sector, while we suspect no significant rela-
tionship with weather variations, we still apply our methodology to this time-series. As Figure
8 and Table 5 illustrate, our approach reveals a minimal yet measurable thermosensitivity in
the industrial sector with respect to temperature variations. Specifically, our approach proves
suitable as the statistical significance of the coefficient estimated from the GWI highlights
that weather conditions play a minor but significant role. This finding underscores the weak
dependence of industrial electricity consumption on temperature changes, consistent with
expectations given the lower heating and cooling requirements in this sector. The analysis of
the different metrics demonstrates that while thermosensitivity is small, it remains relevant
to use the optimal weather regressors, as the residuals’ distribution and autocorrelation are
well-behaved. This demonstrates the robustness of our methodology even in contexts where
weather-induced energy demand variations are expected to be limited.

To compare our estimates with those found in the literature, we present the estimated
sectoral thermosensitivity in different ways. Specifically, Considine (2000) reports semi-
elasticities, which are interpreted as the percent change in aggregate energy consumption for
a one-degree day deviation per day. Table 7 presents our estimates of these semi-elasticities,
interpreted as folow: if there were one additional heating degree day per day over an entire
month, residential electricity consumption would increase by 0.54% (0.018 × 30 = 0.54).

24Please note that here the variable GWI represents a heating degree variable with a base temperature
defined at 13°C, as presented in Table 4. For consistency with the other time-series, we still compare it to
our benchmark and the country-specific base temperature of 15°C as defined previously.
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Figure 8: Seasonal adjustment and residuals distributions for qHighe
t

5.0

5.5

6.0

6.5

7.0

2012 2014 2016 2018 2020 2022

q tH
ig

h e
 (

Tw
h)

GWI GWI(15) HDV(18) HDV(EU)

0

1

2

3

−0.50 −0.25 0.00 0.25

R
es

id
ua

ls
 d

en
si

ty

GWI GWI(15) HDV(18) HDV(EU)

−0.2

−0.1

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12

R
es

id
ua

ls
 a

ut
oc

or
re

la
tio

n

GWI GWI(15) HDV(18) HDV(EU)

Notes : The figure displays seasonal adjustment and residual distributions for qHighe
t . The top panel shows the

seasonally adjusted time-series for four specifications. The bottom panels illustrate the residual distributions, with
the left panel showing residual density and the right panel presenting residual autocorrelation by month.

For residential electricity demand, our estimated semi-elasticity is 0.018%, which closely
aligns with the values reported by Considine (2000), ranging from 0.016% to 0.018%. For
gas demand, our combined residential and tertiary sector estimate of 0.035% is consistent
with the broader findings in the literature, which suggest that gas demand elasticities tend
to be higher than those for electricity, particularly in the residential sector. Finally, the
industrial gas demand elasticity in our study is 0.015%, which is slightly higher than the
0.013% reported by Considine (2000). Second, we also estimated that approximately 26% of
residential electricity use is dedicated to heating, as shown in Table 7.25 This estimate aligns
closely with the 27% reported by Electricité de France (EdF), the main electricity producer
in France (EdF, 2024). This consistency between our findings and EdF’s estimates supports
the robustness of our approach in quantifying the share of electricity used for heating.

25The thermosensitivity share is calculated as follows: the thermo-sensitivity estimate is multiplied by the
annual HDV, yielding the consumption level attributed to heating purposes. This value is then divided by
the annual total consumption, allowing the thermosensitivity share to be derived.
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Table 7: Thermosensitivity as shares and semi-elasticities

Average Annual Consumption (TWh)
Gas Electricity

Residential 263 192
Tertiary 158

Industrial 155 78
Thermosensitivity as semi-elasticities (%)

Gas Electricity
Residential 0.035% 0.018%

Tertiary 0.005%
Industrial 0.015% 0.003%

Average Thermosensitivity Share (%)
Gas Electricity

Residential 53% 26%
Tertiary 8%

Industrial 22% 4%

Notes : The semi-elasticities are approximated by calculating
the ratio between the thermosensitivity coefficient (in levels) and
the average consumption. The thermosensitivity share is derived
as the proportion of total consumption attributable to heating
purposes. This is calculated by multiplying the thermosensitiv-
ity coefficient by the annual average number of heating degree
days (1495), and dividing the result by the total annual average
consumption.

5 Robustness analysis

This section provides a robust analysis of our GWI approach to, time subsample, daily and
spatial data, considering 12 administrative regions of France.26

5.1 Rolling time window analysis

This section aims to test the robustness of the GWI over time, comparing it to the two
standard HDD benchmarks. We focus solely on the temperature-related HDV and qLowe

t ,
as other weather variables were neglected in the previous literature. We demonstrate that
the base temperature indeed changes over time, which is the first criticism of the standard
HDD. Additionally, we show that the GWI selects the optimal value for the temperature
HDV in any time sub-sample. Recall that Section 4.1 presents an application using monthly
aggregated data from January 2012 to December 2022. In this section, we perform a rolling
exercise using ten-year moving windows from 2000 to 2022, providing an overview of the
variations in the optimal composition of the GWIqt index, shown here for qLowe

t .
Figure (9) illustrate the outcomes of the rolling LASSO exercise concerning the HDVtemp se-
lection, initially the benchmarks and the country-specific temperature are proposed, namely:
HDVtemp=18; HDVtemp=EU and HDVtemp=15.

First, for each time step, the Eurostat double threshold is never selected. Second, the
26The 12 administrative regions considered are the metropolitan administrative regions, without Corse

that is not served by ENEDIS for qLowe
t .
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Figure 9: HDVtemp LASSO estimates on time-varying window
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Notes : The figure displays the result of a rolling exercise, over
the period 2000-2022, with a different ten years window at each
rolling step. The lines represent the level of the coefficients esti-
mated by LASSO and the bars represents the selected variable
at each steps.

base temperature of 18°C, as defined in the literature, is initially the most commonly se-
lected by the LASSO processes. However, over time, the estimated coefficient for a base
temperature of 15°C is progressively less penalized, eventually surpassing that of 18°C. This
result suggests that, in France, between 2000 and 2022, there has been a shift in behavior
regarding the temperature at which agents begin heating their premises. While the base
temperature is often assumed to be constant over time, despite potential changes in behavior
or technology (Kennard et al., 2022), our proposed approach demonstrate that changes do
occur, they are however relatively smooth and not frequent. Due to the design of this study,
it is only possible to hypothesize on the determinants of this empirical change in behavior.
Two main hypotheses emerge: on the one hand, improvements in the energy efficiency of
the housing stock, particularly through thermal renovation, may have reduced the need for
heating at higher temperatures. On the other hand, changes in habits, possibly linked to
greater environmental awareness or policies aimed at reducing energy demand, such as energy
sobriety initiatives, could also play an important role. This result emphasizes the need to
tailor the threshold to the specific sub-sample being studied, as different time windows could
result in different behavioral responses to temperature. This could raise concerns about the
comparability of the policy evaluation across different time-varying subsamples. To illustrate,
a substantial policy investment in energy-efficient buildings should result in a shift to a lower
baseline temperature due to increased building insulation.

5.2 Daily data

To study the robustness of our approach to higher frequency, we apply the same procedure as
in section 4 to the daily data, to decompose the optimal base temperature and possible other
weather regressors. Recall that at the daily frequency, only residential electricity demand
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is available. Applying our procedure to determine the daily GWI for low voltage electricity
demand again leads to the definition of a base temperature of 15°C (see Table 8 and Figure
10). The non-linear relationship between energy demand and temperature is similar to that
estimated using the monthly dataset as shown in Figure 2 -(a). However, in opposite to
monthly data, Figure 10 shows a stronger variability in the demand level for a constant
temperature, inducing significant effects from other sources than temperature such as the
wind speed and the sunlight duration as selected in the GWI by our methodology.
Table 9 confirms that the optimal specification is the GWI with a base temperature at 15.
It leads to the estimation with both the lowest AIC and RMSE. Morever the p-value of the
Diebold-Mariano test asses that the model has better predictive power when specified with
either only HDVtemp=15 or the whole GWI, compare to a HDD at 18. The thermosensi-
tivity estimates is still expressed in TWh/HDV that can be interpreted as the increase of
energy demand in TWH when the HDV increase of 1°C, ceteris paribus. The estimated coef-
ficient is estimated at 0.0213 TWh/HDVtemp=GW I . This is lower than the estimate of 0.0338
TWh/HDVtemp=GW I presented in Table 6. This difference can be explained by the variation
in the time span of the data between the two samples: the main sample covers a ten-year
period, while the second sample only includes data from 2019 to 2022, which contains excep-
tional years in terms of energy consumption. Specifically, 2020 and 2021 were influenced by
the COVID-19 pandemic, while 2022 saw a significant decrease in consumption, -10.2%, due
to multiple factors such as inflation and energy-saving policies (CGDD, 2023).

Figure 10: Clustering analysis of daily low tension electricity response to temperature

0.4

0.6

0.8

1.0

0 10 20 30
Temperature (°C)

q tD
ai

ly
e  (

Tw
h)

1 2 3

Notes : This figure is a visual representation of
the K-means algorithm results for three different
regimes. The vertical red line represents the regime-
switching point, or base temperature, between the
non-heating and heating periods. Daily electric-
ity consumption spans the period from January 1,
2019, to December 31, 2022.

29



Table 8: General Weather Indicator - Daily

Step 1
Temperature Wind Sunlight Rain

qDailye
t 9; 15 4.2; 4.5 500; 592 2.4; 2.9; 3.8; 6.6; 8.9

Step 2
Temperature Wind Sunlight Rain

qDailye
t 15 4.5 500 -

Notes: Daily electricity consumption and weather data span the period from January 1, 2019, to December 31, 2022.

Table 9: Daily estimates of Thermosensitivity (TWh/HDV)

qDailye
t

HDVtemp=GW I 0.0213***
(0.0030)

R2
a(18) 0.9983

R2
a(EU) 0.9980

R2
a(15) 0.9991

R2
a(GWI) 0.9992

AIC(18) -2777
AIC(EU) -2778
AIC(15) -2825
AIC(GWI) -2828
RMSE(18) 0.0072
RMSE(EU) 0.0078
RMSE(15) 0.0051
RMSE(GWI) 0.0049
p.valueDM(18|15) 0.0000
p.valueDM(18|GWI) 0.0000
N 730
Notes: The estimates are from regSARIMA with daily energy consumption level in TWh as the depen-
dent variable. The table presents estimates for temperature components that significantly impact energy
consumption. Additionally, the model includes estimates for other weather components under the GWI spec-
ification. Each regression also incorporates fixed SARIMA components, capturing cyclic patterns and fixed
control variables for business days, leap years, weekends, and holiday effects. For the SARIMA component
order of polynomials δ. Φ and Θ are fixed along the defined using the Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF) (see Figure 13 in Appendix A.3). Thus, the process is defined as
(7.0.1)(0.1.1). Daily electricity consumption and weather data span the period from January 1, 2021, to
December 31, 2022.

5.3 Regional data

This section used a daily disaggregated dataset for each of the 12 regions, to unravel the
optimal weather vectors across France. We present the first step using the K-means procedure
and it defines an average, normalized, base temperature of 15°C as reported in Table 10.
However, the regional decomposition shows a non-continuity in the base temperature detected
for each region. In particular, the region Provence-Alpes-Côte d’Azur shows a HDVtemp and
CDVtemp related to the temperature effects, it leads to classify this region has having a U-
shape functional form as describe in Section 4.3.1 meaning with a summer thermo-sensitivity
linked to the use of cooling devices. Appendix B.2 shows the cluster detection in the case of
Provence-Alpes-Côte d’Azur compare to another region.

Furthermore, Table 10 illustrates the baseline temperature using the clustering algorithm
and the SETAR procedure. The results demonstrate that the K-means approach produces a
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more robust estimate in the presence of spatial heterogeneity. The columns labelled RMSE
show the root mean square error (RMSE) for the regSARIMA process using the two methods.
The results demonstrate that the temperatures extracted by K-means led to a more optimal
estimation than with SETAR. This indicates that clustering methods are more robust to
spatial heterogeneity. However, both methods produce comparable results at the aggregate
level (see Appendix B.3 for details).

Table 10: Estimated base temperature for regionals HDV

HDV K−means
temp HDV SET AR

temp

estimated round RMSE estimated round RMSE
Grand Est 14.14 14 1.02 14.46 14 1.02
Normandie 14.45 14 2.02 12.93 13 2.20
Hauts-de-France 14.47 14 1.51 13.27 13 1.62
Bretagne 14.65 15 2.10 15.27 15 2.10
Centre-Val de Loire 14.72 15 1.90 12.86 13 2.23
Bourgogne-Franche-Comté 14.75 15 1.34 16.03 16 1.35
Auvergne-Rhône-Alpes 14.79 15 1.39 17.93 18 1.47
Pays de la Loire 15.47 15 2.04 16.80 17 1.93
Île-de-France 15.70 16 1.40 12.73 13 1.72
Occitanie 16.20 16 1.49 19.14 19 1.49
Provence-Alpes-Côte d’Azur 16.69 17 1.36 19.20 19 1.42
Nouvelle-Aquitaine 17.46 17 1.52 18.69 19 1.60
Mean 15.25 15 1.47 15.86 16 1.53
Weighted Mean 15.45 15 - 16.01 16 -
Notes : The base temperatures are defined using the K-means algorithm in a two-dimensional environment:
energy consumption and temperature level. The lowest temperature of each regime is extracted and registered
as the base temperature for regime switching. The table shows the base temperature for the regime switching
between the non-heating and heating periods. The national weighted mean is computed using the number of
households recorded in the French national census from 2020. Regional daily energy consumption spans the
period from January 1, 2022, to December 31, 2022.

Table 11 presents the estimated weather coefficients with a regSARIMA specification.
For clarity purposes, only the estimated coefficients are reported and if the estimate was
not significant than it has been presented as "-". In terms of the level of the estimates, it
represents the variation of demand in kWh per household for a variation of one unit from the
different weather indicators. Table 11 is shorted according to the thermo-sensitive estimate
level, from the lowest to the highest one. The strongest thermo-sensitivity coefficient is
estimated for the region Normandie and the smallest for the region Grand Est, highlighting
the heterogeneity in the estimated thermo-sensitivity. Thus, in Normandie, a deviation of one
heating-degree day is estimated as resulting in an increase of 1.34 kWh in energy consumption
per household. The last row of Table 11, showcase the estimated aggregate thermosensitivity
coefficient, presented in TWh. This value is obtained in two steps: first, by multiplying the
initial regional coefficients, expressed in kWh per household, by the number of households
in each region. In the second step, each regional coefficient is converted into TWh, and
then we average across all regions. The value obtained is 0.0405 (TWh/HDV). This differs
from the 0.0338 (TWh/HDV) estimate obtained in section 4.1, without accounting for spatial
heterogeneity, which reflect regional differences in heating habits.

Regarding the GWI, there is heterogeneity depending on the climate zone on which the
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administrative region depends. First, the correlation table (see Table 20 in appendix A.3)
shows that the temperature correlation is strong for all regions, but can be relatively smaller
for regions from hot climatic zones, where there is probably a cooling degree effect. Then, the
sunlight and wind correlations are on average lower than at the national level. The estimation
on Table 11 can be interpreted in terms of GWI, the estimation allows us to develop our
interpretation in terms of the pool of significant weather indicators for each region. First,
we again identify the region with a significant cooling effect: Provence-Alpes-Côte d’Azur.
This region is located in a hot climatic zone in the southern metropolitan area of France.
Secondly, the effect of sunlight and wind speed are mostly significant as expected with a
positive estimate, meaning that an increase in wind speed leads to an increase in demand
and a decrease in sunlight duration also leads to a decrease in demand. Finally, for three
regions, among the one Bourgogne-France-Comté which is the most rainy region in the last
years, the rain amount plays a significant role.

Table 11: Regional daily estimates response to weather sensibility (kWh/Household/HDV)

HDVtemp CDVtemp HDVwind HDVsunlight HDVrain

Grand Est 0.6591 - 0.4671 0.0063 -
Île-de-France 0.8361 - 0.6305 0.0058 -
Bourgogne-Franche-Comté 0.8744 - 0.8408 0.0049 0.0601
Auvergne-Rhône-Alpes 0.9535 - 0.5333 - -
Hauts-de-France 0.9776 - 0.4314 0.0185 -
Nouvelle-Aquitaine 1.0332 - 0.7309 - 0.0889
Occitanie 1.1622 - - - -
Centre-Val de Loire 1.1700 - 0.7871 0.0099 -
Provence-Alpes-Côte d’Azur 1.1946 0.4625 0.3185 - -
Pays de la Loire 1.2795 - 0.6188 0.0151 -
Bretagne 1.2900 - 0.5087 0.0177 -
Normandie 1.3372 - 0.6179 0.0168 0.1006
Mean (kWh/Household) 1.0639 0.0385 0.5404 0.0079 0.0208
Mean (TWh) 0.0405 0.0015 0.0206 0.0003 0.0008

Notes : The estimates are from a regSARIMA regression with regional daily energy demand levels
in kWh/household as the dependent variable. For clarity, non-significant estimates have been
reduced to 0. The table presents the estimates for weather components that significantly impact
energy demand. The estimates for HDVtemp variables can be interpreted as the sensitivity to
cold temperatures. The estimated coefficients for the HDVwind variables represent sensitivity
to strong wind speeds, HDVsunlight variables as sensitivity to lower sunlight duration, and
HDVrain variables as sensitivity to an increase in the millimeters of rain during a 24-hour
period. Additionally, the model estimates the SARIMA components, i.e., the cyclic elements,
and control variables for business days, leap years, weekends, and holiday effects. Regional daily
energy demand spans the period from January 1, 2022, to December 31, 2022.
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6 Conclusion

The use of standard HDD faces three main criticisms: the lack of statistical criteria to
define the base temperature, the reliance solely on temperature as the weather variable,
and the assumption of a constant base temperature over time and space. To address these
concerns, this study introduces a statistically validated approach—the General Weather In-
dicator (GWI)—to analyze weather effects in energy consumption seasonal adjustment, with
an application to France’s electricity and natural gas consumption. Our statistical procedure
relies on a clustering algorithm (K-means), followed by a LASSO penalization procedure.
This indicator advances the understanding of temperature response functions and their un-
derlying assumptions. First, our results challenge the conventional use of static base tem-
peratures, such as 18°C for HDD (Heating Degree Days) and 21°C for CDD (Cooling Degree
Days), by identifying dynamic base temperatures. Second, our analysis reveals the spa-
tial variability of temperature sensitivity. Regional differences in energy demand responses
highlight the significant limitations of assuming a uniform base temperature across diverse
geographical regions. For example, while some regions exhibit typical L-shaped temperature-
demand relationships, similar to the national scale, others display distinct patterns driven
by specific behaviors, such as increased cooling demand during summer in parts of southeast
France. These regional variations reflect local climatic conditions, building characteristics,
and energy-use habits. Finally, we expand beyond temperature as the sole weather indicator
by incorporating additional variables such as solar radiation and wind speed. The inclusion
of these variables, supported by robust statistical validations, underscores their importance
in refining energy demand models. For instance, incorporating solar radiation significantly
enhances model performance, as evidenced by various metrics (AIC, RMSE, adjusted R2,
Ljung-Box and Diebold-Mariano tests). Additionally, as a by-product of this study, we es-
timate sectoral weather elasticities for French energy demand at both monthly and daily
levels. These estimations provide a valuable tool for policymakers and researchers, especially
for calibrating micro-simulation models used in France.
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A Appendix

A.1 Litterature review on HDD/CDD

Table 12: Panel of base temperatures found in the literature and associated justifications
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A.2 Data sources

Table 13: Variables used, sources and transformations
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A.3 Descriptive statistics

A.3.1 Monthly data

Figure 11: ACF and PACF for electricity and natural gas consumption
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Table 14: Descriptive statistics of demand (TWh)

N Mean St. Dev. Min Max

qLowg

t 132 21.99 14.36 4.79 53.89
qHighg

t 132 13.00 3.08 7.67 20.17

qLowe
t 132 16.01 5.04 10.55 27.86

qMede
t 132 13.20 1.06 9.84 16.27

qHighe
t 132 6.52 0.49 4.73 7.49

qgas
t 132 34.98 16.96 13.32 73.29

qelec
t 132 35.74 6.17 27.68 51.54
Notes : The descriptive statistics are reported as TWh consumption. The
variables qgas

t and qelec
t represent the sums of the respective variables qLowg

t ,
qHighg

t and qLowg

t ,qMedg

t ,qHighg

t . The monthly data spans the period from
January 2019 to December 2022.

Table 15: Share of economic sector regarding the energy delivery mode - Median

Residential Service Industrial Other Total
qLowe

t 79,6% 16,0% 1,5% 2,9% 100%
qMede

t 0,0% 57,5% 39,0% 3,3% 100%
qHighe

t 0,0% 18,8% 81,2% 0,0% 100%
q

Lowg

t 46,4% 26,2% 27,2% 1,3% 101%
q

Highg

t 0,0% 6,2% 93,8% 0,0% 100%
Notes : The table presents the breakdown of energy consumption by delivery
mode into the sectorial consumption mode. This distribution rely on a SDES
annual survey of energy suppliers and is computed on the 2018-2022 vintage.

Table 16: Share of delivery mode for each energy demand - Median

qLowe
t qMede

t qHighe
t

qElec
t 43.44% 35.23% 21.33%

q
Lowg

t q
Highg

t

qGas
t 64.62% 35.38%

Notes : The table presents the breakdown of aggre-
gate energy demand time series regarding the delivery
mode.
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A.3.2 Daily data

Figure 12: Daily electricity consumption in TWh
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Table 17: Descriptive statistics electricity demand (< 36 kVA) in TWh

N Mean St. Dev. Min Max

qDailye
t 1461 0.524 0.168 0.327 0.981

qMonthlye
t 36 15.95 4.87 10.64 26.22

qLow
t 36 15.92 4.88 10.59 26.04
Notes : The table presents the data distribution at the daily level qDailye

t for
the 1096 days available on the dataset. The same statistics are computed at
the monthly aggregate level qMonthlye

t on the series and compared with the
qLowe

t monthly series from the main study. Both series from different sources
and on different time frames describe similar energy consumption behaviour.

Table 18: Correlation between weather indicators and energy time series - Daily data

temp sunlight wind rain

qDailye
t -0.912 -0.548 0.221 0.042

(0.000) (0.000) (0.000) (0.162)
Notes : The table show the correlation coefficients and
the p-value associated in brackets. The p-values rep-
resent the probability that the null hypothesis, which
represents a null correlation, is non-rejected. Thus a
null p-value is interpreted as a correlation significantly
different from 0.
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A.3.3 Daily regional data

Figure 14: France 12 administrative regions
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Table 19: Descriptive statistics regional electricity demand (< 36 kVA) in TWh

N Mean St. Dev. Min Max
Centre-Val de Loire 730 0.021 0.008 0.013 0.041
Bourgogne-Franche-Comté 730 0.022 0.007 0.015 0.042
Normandie 730 0.028 0.011 0.017 0.057
Bretagne 730 0.029 0.011 0.018 0.058
Grand Est 730 0.031 0.010 0.020 0.056
Pays de la Loire 730 0.032 0.012 0.020 0.063
Hauts-de-France 730 0.039 0.013 0.024 0.074
Provence-Alpes-Côte d’Azur 730 0.048 0.014 0.032 0.086
Nouvelle-Aquitaine 730 0.050 0.017 0.033 0.096
Occitanie 730 0.052 0.017 0.035 0.100
Auvergne-Rhône-Alpes 730 0.063 0.021 0.042 0.122
Île-de-France 730 0.074 0.025 0.043 0.138

Notes : The table presents the data distribution at the daily level for 12
different regions and for the 730 days available on the dataset. The region
"Centre-Val de Loire" is the one with the lowest mean consumption over
a day, with 0.021 TWh and the region "Ile-de-France" is the one with the
highest mean consumption over a day with 0.074TWh.

Table 20: Correlation between weather indicators and energy time series - Daily regional data

temp sunlight wind rain

Île-de-France -0.906 -0.493 0.168 -0.010
(0.000) (0.000) (0.001) (0.848)

Centre-Val de Loire -0.897 -0.522 0.181 -0.097
(0.000) (0.000) (0.001) (0.065)

Bourgogne-Franche-Comté -0.904 -0.494 0.182 -0.085
(0.000) (0.000) (0.000) (0.105)

Normandie -0.891 -0.484 0.205 0.038
(0.000) (0.000) (0.000) (0.467)

Hauts-de-France -0.899 -0.494 0.183 0.015
(0.000) (0.000) (0.000) (0.780)

Grand Est -0.911 -0.529 0.214 -0.045
(0.000) (0.000) (0.000) (0.393)

Pays de la Loire -0.875 -0.500 0.119 0.016
(0.000) (0.000) (0.023) (0.767)

Bretagne -0.870 -0.493 0.111 0.101
(0.000) (0.000) (0.034) (0.055)

Nouvelle-Aquitaine -0.866 -0.391 0.056 0.011
(0.000) (0.000) (0.285) (0.839)

Occitanie -0.826 -0.345 0.063 0.047
(0.000) (0.000) (0.233) (0.367)

Auvergne-Rhône-Alpes -0.888 -0.484 0.018 -0.087
(0.000) (0.000) (0.732) (0.098)

Provence-Alpes-Côte d’Azur -0.784 -0.329 0.145 0.002
(0.000) (0.000) (0.005) (0.970)

Notes : The table show the correlation coefficients and the p-value associ-
ated. The p-values represent the probability that the null hypothesis, which
represents a null correlation, is non-rejected. Thus a null p-value is inter-
preted as a correlation significantly different from 0.
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A.4 Ordered energy consumption and weather variables

Figure 15: qLowe
t demand as a function of weather
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Notes : Normalized visualisation of energy demand with regards to weather variables.

Figure 16: qMede
t demand as a function of weather
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Notes : Normalized visualisation of energy demand with regards to weather variables.
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Figure 17: qHighe
t demand as a function of weather
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Notes : Normalized visualisation of energy demand with regards to weather variables.

Figure 18: q
Lowg

t demand as a function of weather
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Notes : Normalized visualisation of energy demand with regards to weather variables.
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Figure 19: q
Highg

t demand as a function of weather
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Notes : Normalized visualisation of energy demand with regards to weather variables.
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A.5 Procedure to define the number of centroïds

Figure 20: Detection of the optimal number of cluster via the SDindex
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Notes: The figures showcase the level of the Standard Deviation Index relative to the number of clusters. The
dotted vertical line highlight the number of cluster that allow to minimize the index and thus define the optimal
number of cluster.

A.6 Dubin (2008) functional form with two heating thresholds

Figure 21: Functional form adapted from Dubin (2008)
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B Complementary results

B.1 Weights sources

To test the robustness of weighting solely by population, we explored weighting by employ-
ment rates. Specifically, employment in the industrial sector was used for industrial energy
demand, while employment in non-industrial sectors was used for the service sector.
To evaluate the impact of these alternative weighting methods, we analyze the distribution of
weighted temperatures graphically (see Figure 22) and conduct Wilcoxon significance tests
(see Table 21). In all comparisons, the p-values are significantly greater than the typical
significance threshold, indicating that the null hypothesis of no difference in the location of
the distributions could not be rejected. These findings suggest that the distributions of the
differently weighted temperatures are statistically similar.

Table 21: Wilcoxon rank sum test results

Comparison W Statistic p-value
Population vs Workplace 37 617 0.8017
Population vs Industrial 39 073 0.5993
Industrial vs Workplace 36 773 0.4829

Notes: The table showcase the Wilcoxon statistics
and the associated p-value. Since the Wilcoxon test
is bilateral, we conducted three combinations of bi-
lateral tests to comprehensively cover all necessary
comparisons for determining significant results re-
garding mean differences.

Figure 22: Monthly mean weighted temperature distributions
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Notes: The figure illustrates the monthly mean weighted tem-
perature distributions across four different contexts: Baseline
(non weighted), Population (weighted by population distribu-
tion), Workplace ( weighted by workplace proxy by non indus-
trial employment) and Industrial (weighted by industrial activ-
ity proxy by industrial employment). Solid vertical lines indicate
the median for each distribution. Daily temperature data spans
the period from January 2000 to December 2022.
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B.2 Cluster detection for Provence-Alpes-Côte d’Azur

Figure 23 presents the relationship between temperature and electricity demand for two differ-
ent regions namely Provence-Alpes-Côte d’Azur (a) and Bourgogne-France-Comté (b). Each
panel shows clustering results based on temperature thresholds identified by the clustering
algorithm. The dashed vertical lines represent the detected thresholds, and each cluster is
displayed with distinct colors or shades. Panel (b) serves as a reference, as it closely resem-
bles the national-level relationship between temperature and electricity demand. This figure
reveals a known L-shaped curve with three clusters: electricity demand decreases with rising
temperatures up to a certain threshold, after which it stabilizes at low levels. In contrast,
Panel (a) highlights a region with a specific demand response during the summer months,
apriori driven by the use of air conditioning. Here, the clustering algorithm detects five
distinct clusters and reflecting a U-shape relationship between temperature and electricity
demand. Notably, at higher temperatures, the demand increases again due to air condition-
ing use, which diverges from the behavior observed at the national scale. This comparison
illustrates the heterogeneity in temperature sensitivity across regions, with regional-specific
factors, such as the prevalence of cooling systems, influencing the shape of the temperature-
demand relationship.

Figure 23: Regional clustering analysis of energy response to temperature
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Notes: These figures are a visual representation of the K-means algorithm results. The dashed lines represent the
regime-switching point, or base temperature and the clusters represent the different regimes. Daily regional energy
consumption and weather data span the period from January 2019 to December 2022.

51



B.3 Threshold detection via SETAR procedure

A seminal methodology was to draw upon Carcedo and Vicéns-Otero (2005) and Bessec
and Fouquau (2008), which employs a Smooth Transition AR (STAR) method based on a
predetermined definition of the data generation function. However, a smooth method induces
to define a priori the function that best describes the relation between the series. Since we
want our method to be also useful for other indicators than the temperature, our proposal
relies on the adoption of a non-smooth methodology grounded in the method of multivariate
Threshold Vector Autoregression (TVAR) from Lo and Zivot (2001) and based on the Self-
extracting AR (SETAR) modelling paradigm.
A TVAR model extends the traditional VAR framework by incorporating threshold effects,
allowing for nonlinear dynamics in the relationships between variables. This approach is
particularly useful when the relationships between variables are subject to structural changes
or regime shifts. In a multivariate TVAR model, the data is divided into different regimes
or states, and separate VAR models are estimated for each regime. The key feature of
a multivariate TVAR model is the identification of thresholds that determine the switch
between different regimes. For reference, in a univariate dimension, the SETAR modelling
with two regimes and one threshold can be describe as in (9) and allows to estimate the
coefficients ϕ1 and ϕ2 but also the threshold c that correspond to the transition between
both regimes.

zt =
{

ϕ1zt−1 + ϵ1t if zt−1 ≤ c
ϕ2zt−1 + ϵ2t if zt−1 > c

(9)

Estimating the threshold parameter is not obvious due to its representation as a discontinuous
function. A viable approach involves concentrating the objective function since the slope
estimators given a known threshold can be estimated by ordinary least squares (OLS), the
problem can be simplified by concentrating out the minimization problem through ϕ(Θ) and
the corresponding sum of squares SSR(Θ). This leads to the following objective function:

Θ̂ = arg min
Θ

SSR(Θ) (10)

Minimization of (10) is done through a grid search: values of the threshold are sorted, the
SSR is estimated for each selected threshold and the one that minimize the SSR is taken as
the estimator. Table 22 showcases thresholds levels estimated with this first method.

Table 22: General Weather Indicator - Step 1 based on SETAR

Temperature Wind Sunlight Rain Cloudiness
q

Lowg

t 11; 15 3.2 281; 395 1.5; 2 25
q

Highg

t 10; 15.5 3; 3.5 286; 395 2 23
qLowe

t 10; 15 3; 3.5 323; 412 2 24
qMede

t 13; 19 3; 3.5 379; 461 2 24
qHighe

t 13; 16 3; 3.5 286; 395 2 24

Notes: Extracted thresholds wbase using the SETAR procedure. Monthly energy consumption and weather
data span the period from January 2012 to December 2022.
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