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Context



Motivations

• The Paris Agreement aims to reduce global greenhouse gas emissions

• Energy demand accounts for an average of 77% of total emissions in Europe

• The ”Pluriannual Energy Plan” (PPE) sets the reduction targets for France

• Adjusting demand is crucial for accurate assessments of energy consumption reduction
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Figure 1: Temperatures and low tension electricity demand normalised by month - France

Correlations
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Heating Degree Days
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Figure 2: Heating Degree Days and low tension electricity demand normalised by month - France

HDD =

{
Tbase −Tt if Tt < Tbase

0 otherwise
(1)

Tbase the outside temperature at which agents decide to heat (cooldown) their premises
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Research questions

Main question

How do we define the base temperature ?

• Some literature has explored the definition of Tbase at an aggregate level (Thom, 1954;

De Azevedo et al., 2015; Bessec and Fouquau, 2008)

• The choice of Tbase is rarely justified at the aggregate level in the applied literature and set to

18C for HDD and 21C for CDD out of habits
Applied literature

• The stability of the Tbase can be challenged:

• over time (Cui et al., 2023; Kennard et al., 2022; Sailor and Pavlova, 2003)

• over space (Bessec and Fouquau, 2008)

• over weather indicator selection (Lefieux, 2007; Lundström, 2017)
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Preview of results



Contributions

• Introduction of a General Weather Indicator (GWI)

• An econometric framework: a two-steps procedure using Clustering and Penalisation

• Applying the procedure to France’s energy demand
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Results

• For the 2012-2022 period, we define a base temperature of 15C for France

• Felt temperature : wind strength and sunlight duration can significantly explain variations in

energy demand
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Econometric Framework



To construct adjusted time series, accounting for seasonality, working day effects, and weather

variations, the recommended econometric approach is based on reg SARIMA (Eurostat)

{
qt = βGWIt + α1lyt + α2wdt+xt

Φ(Bs )δ(Bs )xt = Θ(Bs )at
(2)

• qt an energy demand variable over T observations

• GWIt General Weather Indicator a vector of HDV 0 and CDV 0

• β vector of weather sensitivity coefficients

• (lyt ;wdt ) working days

• Φ(Bs ); δ(Bs );Θ(Bs ) polynomials for SARIMA(1, 0, 1)(0, 1, 1)

• at adjusted time series following a N(µa, σ2
a ) distribution

HDV 0 and CDV 0
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Two-steps statistical procedure



Two-steps statistical procedure

• Step 1 - Discover the set of potential heating and cooling days variables

K-Means clustering algorithm to detect regime switching behavior
Clustering
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Step 1

Return

• Cluster the observations within a

2-dimensional space between demand qt and

one of the n weather variables denoted by wk
t

• Use of K-means algorithm (MacQueen, 1967)

and the Within Sum of Square criterion (WSS)

WSS =
k

∑
j=1

nk

∑
t=1

||dt − c̄j ||2 (3)
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Figure 3: qLowe
t against temperatures - France
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Two-steps statistical procedure

• Step 1 - Discover the set of potential heating and cooling days variables

K-Means clustering algorithm to detect regime switching behavior
Clustering

• Step 2 - Define the optimal vector of heating and cooling days variables

LASSO regression as a penalisation method to uncover the optimal vector
Penalisation
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Step 2

Return

The combination of HDV and CDV is defined as the optimal combination highlighted by the LASSO

penalisation process

{
qt = β∗Xt + εt

min∑t (qt − q̂t )2 + λ||β||k
(4)

• qt an energy demand variable with T observations

• Xt vector of weather regressors containing all potential HDV and CDV

• λ regularization term to penalize the less significant regressors

• β∗ vector of penalised weather sensitivity coefficients (β∗k)

• εt white noise following a N(µϵ, σ2
ϵt ) distribution
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We propose to define the general weather indicator (GWI (5)) derived from a combination of Heating

Days Variable (HDV) and Cooling Days Variable (CDV).

General Weather Indicator

GWIqt = [1β∗
k ̸=0 ×HDVqt ,wk

t
; 1β0

k ̸=0 × CDVqt ,wk
t
] (5)

• HDVqt ,wk
t
is the heating days variable of the energy demand qt for the weather variable wk

t

• CDVqt ,wk
t
is the cooling days variable of the energy demand qt for the weather variable wk

t

• 1β∗
k ̸=0 is a dummy variable taking the value 1 if the corresponding heating or cooling variable is

selected and 0 if not
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Application : France Energy demand



Table 1: Description of energy demand series - (2012-2022)

Series Sector

Electricity - Low voltage qLowe
t Proxy for residential demand (80%)

Electricity - Medium voltage qMede
t Proxy for tertiary demand (58%)

Electricity - High voltage qHighet Proxy for industrial demand (81%)

Gas - Distributed q
Lowg

t Proxy for residential and tertiary demand (74%)

Gas - Transported q
Highg
t Proxy for industrial demand (94%)
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Table 2: Description of weather series - (2012-2022)

Series Units (/24h)

Temperature temp Average temperature in C

Sunlight duration sunlight Duration of sunshine in minutes

Wind strength wind Wind speed in m/s

Amount of rain rain Rain level in millimeters

Cloud cover cloud Number of days with a sky overcast > 80% height

• 539 stations selected in metropolitan territory

• Assignment of a single weather station to each

municipality

• Weighting of stations by population (2020 Census)

3159

1429

376

1

Census
Population
(in thousands)

Insee, 2020 & Météo France, 2023
Bruguet, 2024
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Two-steps procedure : focus on residential electricity demand

Step 1
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Figure 4: qLowe
t as a function of temperatures - France

Step 2

Table 3: Definition of GWI for qLowe
t - (2012-2022)

Threshold LASSO

temp 9 0

temp 15 1

wind 3 1

wind 3.5 0

sunlight 300 0

sunlight 400 1

rain 2 0

cloud 24 0

Notes: The K-means column provides thresholds detected by

the clustering method, and the LASSO column indicates 0 if

the threshold was penalised and 1 if the threshold is statistically

significant.
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Seasonal and weather adjustment
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Figure 5: qLowe
t seasonal and weather adjustment
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Economic interpretation



Sectorial results

• Residential Sector

Highly sensitive to the felt temperature variations, primarily due to heating needs
Response Functions for qLowet

• Tertiary Sector

Moderate sensitive to the felt temperature variations, due to heating but also cooling needs

• Industrial Sector

Low temperature sensitivity, as energy use is driven more by production activities
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Robustness



Robustness

• Regional frequency

Regional heterogeneity but we recover the mean national base temperature at 15 C
Regional

• Daily frequency

National base temperature at 15 C with increased importance of the felt temperature

• Timing selection

The LASSO selection differs according to the time window studied
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Conclusion



Conclusion

Contributions

• Introduced a General Weather Indicator (GWI)

• Applied this methodology to France’s energy demand

Results

• National base temperature of 15 C for France for the period 2012-2022

• Wind strength and sunlight duration can significantly explain variations in energy demand

• Heterogeneity in weather response across different economic and administrative sectors
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Thank you for your attention
email : marie.bruguet@dauphine.eu

website : mbruguet.github.io
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Return

Table 4: Panel of base temperatures found in the literature and associated justifications

Country Authors Journal Base Temperature (̌rC) Justifications

Australia Badescu and Zamfir (1999) Energy conversion and management 18 18̌rC is a common base temperature used in the determination of Heating Degree Days

New Zealand Badescu and Zamfir (1999) Energy conversion and management 15,6 and 16 -

Romania Badescu and Zamfir (1999) Energy conversion and management 18 18̌rC is a common base temperature used in the determination of Heating Degree Days

United Kingdom Badescu and Zamfir (1999) Energy conversion and management 16 -

Israel Beenstock et al. (1999) Energy Economics 10 -

Argentina Castaneda and Claus (2013) International journal of climatology 18,3 Thom (1954)

United States of America Considine (2000) Resource and Energy Economics 18,3 ”A degree-day is the difference between a days average temperature in Fahrenheit and 65̌rF”

South-Africa D. Conradie et al. (2018) Building Research and Information 18 18̌rC is a common base temperature used in the determination of Heating Degree Days

Italy De Rosa et al. (2014) Applied energy 18,3 Thom (1954)

Saudi Arabia El-Shaarawi and Al-Masri (1996) Energy 17,8 and 21,1 -

Europe Eskeland and Mideksa (2010)
Mitigation and adaptation

strategies for global change
18 and 22 ”A temperature interval is defined as a comfort zone [] i.e., between 18 and 22̌rC”

Western Europe Golombek et al. (2012) Climatic change 18 18̌rC is a common base temperature used in the determination of Heating Degree Days

Netherlands Hekkenberg et al. (2009) Energy Policy 18 18̌rC is a common base temperature used in the determination of Heating Degree Days

Wordlwide Isaac and Van Vuuren (2009) Energy Policy 18 18̌rC is a common base temperature used in the determination of Heating Degree Days

Turkey Kadioglu et al. (1999) Applied Meteorology and Climatology 15 18̌rC is a common base temperature used in the determination of Heating Degree Days

Hong Kong Lam (1998) Energy conversion and management 18,3 Thom (1954)

Greece Papakostas at al. (2010) Renewable Energy 15 -

Saudi Arabia Said (1992) Engineering And Applied Engineering 18 and 21 -

Ireland Semmler et al. (2010) Meterological Applications 18 ”This temperatures is the most common base temperature of normally insulated buildings”

Europe Spinoni et al. (2015) International journal of climatology 15,5 -

United States of America Taha (1997) Energy and buildings 18,3 Thom (1954)

Macedonia Taseska et al. (2012) Energy 20 -

United States of America Thom (1954) Monthly Weather Review 18,3 Derived from a historical temperature probability function

Spain Valor et al. (2001) Journal of Applied Meteorology 15 ”Within these two limits a comfort zone was established and no heating or cooling is required”

Spain Valor et al. (2001) Journal of Applied Meteorology 18 18̌rC is a common base temperature used in the determination of Heating Degree Days

United States of America Deschênes and Greenstone (2011) American economic journal 18,3 Thom (1954)
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Return

Table 5: Correlation between weather and energy time series

temp sunlight wind rain cloudiness

q
Lowg

t -0.969 -0.825 0.556 0.112 -0.020

(0.000) (0.000) (0.000) (0.063) (0.739)

q
Highg
t -0.822 -0.764 0.331 0.069 -0.057

(0.000) (0.000) (0.000) (0.252) (0.345)

qLowe
t -0.934 -0.807 0.498 0.130 0.008

(0.000) (0.000) (0.000) (0.031) (0.896)

qMede
t -0.410 -0.324 0.031 -0.064 0.435

(0.000) (0.000) (0.608) (0.292) (0.000)

qHighet -0.012 -0.043 0.164 0.044 -0.017

(0.848) (0.479) (0.006) (0.465) (0.782)

qgast -0.966 -0.833 0.531 0.107 -0.027

(0.000) (0.000) (0.000) (0.075) (0.656)

qelect -0.916 -0.790 0.466 0.100 0.134

(0.000) (0.000) (0.000) (0.097) (0.026)

Notes : The table shows the correlation coefficients and the p-values associated. The p-

values represent the probability that the null hypothesis, which represents a null correlation,

is non-rejected. Thus a null p-value is interpreted as a correlation significantly different

from 0. The variables qgas
t and qelec

t represent the sums of the respective variables q
Lowg
t ,

q
Highg
t and qLowe

t ,qMede
t ,qHighe

t .
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Figure 6: HDVtemp

• HDV ∗ : initial indicator derived from temperature

• HDV 0 : indicator center around 0 using its past mean from 1991 to 2020
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Figure 7: (c) Temperature (d) Wind and (e) Sunlight normalized response function from qLowe
t
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Regional results

Return

Base temperature Rounded base temperature

Provence-Alpes-Côte d’Azur 13.8 14

Grand Est 14.1 14

Normandie 14.5 14

Hauts-de-France 14.5 14

Bretagne 14.6 15

Centre-Val de Loire 14.7 15

Bourgogne-Franche-Comté 14.7 15

Auvergne-Rhône-Alpes 14.8 15

Pays de la Loire 15.5 16

Île-de-France 15.7 16

Occitanie 16.2 16

Nouvelle-Aquitaine 17.5 18

Mean 15.0 15.2

Weighted mean 15.2 15.3

Table 6: Regional heating base temperature
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